Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases

نویسندگان

  • Maria Cristina Mascolo
  • Yongbing Pei
  • Terry A. Ring
چکیده

Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C₂H₅)₄NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms) value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ammonia-mediated Method for One-step and Surfactant-free Synthesis of Magnetite Nanoparticles

Magnetite (Fe3O4) nanoparticles have been successfully prepared by a novel one-step and surfactant-free approach utilizing ferrous ion, as a single iron source. In this manner, the reaction occurs between two aqueous solutions via the spontaneous transfer of ammonia gas from one to another in room temperature. No ferric source or oxidizing specie, oxidation controlling and capping agents are ne...

متن کامل

Reverse chemical co-precipitation: An effective method for synthesis of BiFeO3 nanoparticles

The reverse co-precipitation method was used for synthesis of the pure phase multiferroic BiFeO3 (BFO) nanoparticles. Influence of different pH values on the microstructure and magnetic properties of the BFO nanopowders was investigated. Thermogravimetric-differential thermal analysis (TG-DTA) technique indicated that the optimal temperature for calcination is 550°C. The phase formation and the...

متن کامل

Formation of Magnetite Nanoparticles at Low Temperature: From Superparamagnetic to Stable Single Domain Particles

The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm) or even multi-domain behavior (> 80 nm). The crystal growth kinetics resembles surprisingly observati...

متن کامل

Preparation of Superparamagnetic of Co0.5Zn0.5Fe2O4 at Room Temperature by Co-precipitation Method and Investigation of Its Physical Properties

Magnetic nanoparticles of cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) have been synthesized in a homogeneous aqueous solution at room temperature by co-precipitation method without any template and subsequent heat treatment. Synthesis of material is confirmed using XRD from the report of single phase polycrystalline ferrite material and also determined lattice constant. Atomic absorption spectrophoto...

متن کامل

بررسی اثر دمای تکلیس بر خواص فیزیکی و مغناطیسی نانوذرات کبالت عریان و با پوشش سیلیکا

In this paper, in order to investigation the effect of calcination temperature on the structural and magnetic properties of cobalt nanoparticles, samples have been prepared by Co-precipitation method at different calcination temperature. Cobalt nanoparticles have been prepared by Co-precipitation method at room temperature using hydrazine as reducing in ethanol hydrazine alkaline environment. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013